References

References#

Some of these references use similar materials (metal oxides) as in this LO1 class. You can compare your results to theirs. There is no need to read every paper, they only serve as reference materials.

[1]

Oscar Diaz-Morales, Isis Ledezma-Yanez, Marc TM Koper, and Federico Calle-Vallejo. Guidelines for the rational design of ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis, 5(9):5380–5387, 2015. doi:10.1021/acscatal.5b01638.

[2]

Zhenbin Wang, Xingyu Guo, Joseph Montoya, and Jens K Nørskov. Predicting aqueous stability of solid with computed pourbaix diagram using scan functional. npj Computational Materials, 6(1):160, 2020. doi:10.1038/s41524-020-00430-3.

[3]

Kristin A Persson, Bryn Waldwick, Predrag Lazic, and Gerbrand Ceder. Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B—Condensed Matter and Materials Physics, 85(23):235438, 2012. doi:10.1103/PhysRevB.85.235438.

[4]

Fabian L Thiemann, Niamh O’neill, Venkat Kapil, Angelos Michaelides, and Christoph Schran. Introduction to machine learning potentials for atomistic simulations. Journal of Physics: Condensed Matter, 37(7):073002, 2024. doi:10.1088/1361-648X/ad9657.

[5]

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A hitchhiker's guide to geometric gnns for 3d atomic systems. arXiv preprint arXiv:2312.07511, 2023.

[6]

Yury Lysogorskiy, Cas van der Oord, Anton Bochkarev, Sarath Menon, Matteo Rinaldi, Thomas Hammerschmidt, Matous Mrovec, Aidan Thompson, Gábor Csányi, Christoph Ortner, and others. Performant implementation of the atomic cluster expansion (pace) and application to copper and silicon. npj computational materials, 7(1):97, 2021. doi:10.1038/s41524-021-00559-9.

[7]

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: higher order equivariant message passing neural networks for fast and accurate force fields. arXiv preprint arXiv:2206.07697, 2022.

[8]

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, Dávid P Kovács, Janosh Riebesell, Xavier R Advincula, Mark Asta, Matthew Avaylon, William J Baldwin, and others. A foundation model for atomistic materials chemistry. arXiv preprint arXiv:2401.00096, 2023.

[9]

Kieron Burke and Lucas O. Wagner. Dft in a nutshell. Int. J. Quant. Chem., 113:96–101, 01/2013 2013. doi:10.1002/qua.24259.

[10]

Noémie Elgrishi, Kelley J. Rountree, Brian D. McCarthy, Eric S. Rountree, Thomas T. Eisenhart, and Jillian L. Dempsey. A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2):197–206, 2018. doi:10.1021/acs.jchemed.7b00361.

[11]

Peter T. Kissinger and Adrian W. Bott. Electrochemistry for the non-electrochemist. Current Separations, 20(2):51–53, 2002. URL: http://currentseparations.com/issues/20-2/20-2d.pdf.

[12]

Julie C. Fornaciari, Lien-Chun Weng, Shaun M. Alia, Cheng Zhan, Tuan Anh Pham, Alexis T. Bell, Tadashi Ogitsu, Nemanja Danilovic, and Adam Z. Weber. Mechanistic understanding of ph effects on the oxygen evolution reaction. Electrochimica Acta, 405:139810, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0013468621020934, doi:https://doi.org/10.1016/j.electacta.2021.139810.

[13]

Carlos G. Morales-Guio, Laurent Liardet, and Xile Hu. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. Journal of the American Chemical Society, 138(28):8946–8957, 2016. URL: https://doi.org/10.1021/jacs.6b05196, arXiv:https://doi.org/10.1021/jacs.6b05196, doi:10.1021/jacs.6b05196.

[14]

Michaela S. Burke, Lisa J. Enman, Adam S. Batchellor, Shihui Zou, and Shannon W. Boettcher. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chemistry of Materials, 27(22):7549–7558, 2015. URL: https://doi.org/10.1021/acs.chemmater.5b03148, doi:10.1021/acs.chemmater.5b03148.

[15]

Lena Trotochaud, Samantha L. Young, James K. Ranney, and Shannon W. Boettcher. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 136(18):6744–6753, 2014. URL: https://doi.org/10.1021/ja502379c, doi:10.1021/ja502379c.

[16]

Zhaoyu Wang, Junhua You, Yao Zhao, Ruyue Yao, Guangyi Liu, Jinlin Lu, and Shiyong Zhao. Research progress on high entropy alloys and high entropy derivatives as oer catalysts. Journal of Environmental Chemical Engineering, 11(1):109080, 2023. URL: https://www.sciencedirect.com/science/article/pii/S2213343722019534, doi:https://doi.org/10.1016/j.jece.2022.109080.

[17]

Hwansu Sim, Jooyoung Lee, Taekyung Yu, and Byungkwon Lim. Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction. Korean Journal of Chemical Engineering, 35(1):257–262, Oct 2017. doi:10.1007/s11814-017-0247-2.